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Abstract Evolved gas analysis–ion attachment mass

spectrometric analysis of the principal species produced by

the pyrolysis of Mn2(CO)10 in an infrared image furnace

indicated the presence of Mn(CO)5 in the gas phase. This

observation indicates that Mn2(CO)10 was in equilibrium

with Mn(CO)5. We also studied the temperature depen-

dence of the mass spectrum to obtain information about the

kinetics of the Mn2(CO)5 dissociation reaction. From

the temperature dependence of the peak for Mn(CO)5Li?

(m/z 202), we calculated the apparent activation energy of

Mn(CO)5 dissociation from solid Mn2(CO)10. The calcu-

lated activation energy (274.57 kJ/mol) is compared with

previously reported experimental and calculated values of

Mn–Mn bond dissociation energies.

Keywords Evolved gas analysis � Ion attachment mass
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Introduction

Transition metal carbonyls are used for the commercial

synthesis of CO compounds and have potential for use as

heterogeneous catalysts [1, 2] in organometallic chemistry.

Information about the metal–metal bond energies, D(M–

M), in metal carbonyl clusters can be expected to improve

our understanding of reaction kinetics, product composi-

tion and yields of reaction systems. Over the past decades,

large quantities of experimental data have appeared for the

D(Mn–Mn) bond energies of Mn2(CO)10 [3–13].

Using information gained in our previous studies of Li?

ion attachment mass spectrometry (IAMS) [14–17], we

recently showed that during evolved gas analysis (EGA)–

IAMS studies of the pyrolysis of Mn2(CO)10 in an infrared

image furnace (IIF), Mn(CO)5 is present in the gas phase

[18], providing direct evidence that d–metal complex rad-

icals are formed in the IIF. The temperature dependence of

the spectrum has also be evaluated with a view toward

increasing the rate of product formation and confirming

that Mn2(CO)10 undergoes the following dissociation

reaction:

Mn2 COð Þ10� 2Mn COð Þ5

We report here our EGA-IAMS investigation of the

thermal pyrolysis of Mn2(CO)10 and our calculation of the

apparent activation energy (Ea) for dissociation of

Mn(CO)5 from solid Mn2(CO)10. Unlike traditional mass

spectrometry (which involves ionization by high-energy

electrons), EGA-IAMS offers a considerable advantage in

that it preserves the structure of Mn(CO)5 molecules,

allowing their detection as unfragmented adduct ions.

Experimental

Apparatus

We used a homemade system consisting of an atmospheric-

pressure IIF coupled to a Li? IAMS (Canon Anelva,

Kawasaki, Japan) (Fig. 1). The construction of the IIF

inlet system has been reported in detail elsewhere [15]. The
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IFF (RHL-E45P, Sinku-Riko Corp., Tokyo, Japan) was

employed as the heat source. A Mn2(CO)10 sample in a

quartz pan was subjected to temperature-programmed

heating in the IFF. The dissociation products were swept by

a nitrogen stream, at a flow rate in the 250–300 mL/min

range and a pressure of 1 atom, through an orifice into the

mass spectrometer.

The IIF was also used as a temperature-programmed

flow reactor for kinetic studies of Mn2(CO)10 dissociation

by means of a previously described procedure [18]. The

heating rate of 20 �C/min was chosen to avoid heat transfer

limitations. This choice was based on the report [19] that

boundary for particle size was constructed as a function of

the temperature, by comparing characteristic times for

reaction rates versus heating rates. We used the Arrhenius

equation to calculate Ea for dissociation of Mn(CO)5 using

mass spectrometry data obtained in selected ion monitoring

mode.

Samples

Powdered Mn2(CO)10 (sample amount, 1 mg; particle

diameter, 50 lm; 99% purity) was purchased from Aldrich

(Tokyo, Japan) and used as received. No impurities were

detected by mass spectrometry. The nitrogen buffer gas

was purified by passage through a drying tube containing

5 Å molecular sieves.

Results and discussion

Mass spectra

Mn2(CO)10 was subjected to temperature-programmed

heating at a rate of 20 �C/min in the IIF. The total ion

monitoring curves for Mn2(CO)10 showed (Fig. 2, inset)

only one maximum located below 170 �C. The ion

attachment mass spectra of the products obtained from

pyrolysis of Mn2(CO)10 at furnace temperatures of 95 and

145 �C (Fig. 2) under nitrogen showed peaks correspond-

ing directly to the thermal dissociation products, because

IAMS provides only molecular ions for each product spe-

cies. The mass spectrum at 95 �C (Fig. 2, upper panel)

showed a peak at m/z 202, which we assigned as Mn(CO)5

radical species. The presence of neutral products was

indicated by an increase in the current of the Li? adduct

ions.

The appearance of many peaks as products of

Mn2(CO)10 pyrolysis was initiated by the thermal energy.

The spectrum at 145 �C (Fig. 2, lower panel) clearly

showed an intense peak at m/z 202 for Mn(CO)5Li?,

together with small peaks at m/z 63, 203, 229, 257, and

369, suggesting that (CO)2Li?, HMn(CO)5Li?, Mn2(CO)4

Li?, Mn2(CO)5Li?, and Mn2(CO)9Li?, respectively, were

formed in the gas phase.

An important objective of this study was to determine

the fraction of Mn2(CO)10 degraded to the reactive

byproduct Mn(CO)5 during the programmed heating. The

reaction equilibrium was investigated by comparison of

data obtained during variation of the furnace temperature.

Apparent activation energy for dissociation of Mn(CO)5

from Mn2(CO)10 in the solid state

A pyrogram (also referred to as a thermogram) obtained in

selected ion monitoring mode from an EGA system can

provide information about the relative proportions of the

observed molecules, which in turn indicates their relative

production rates. In this study, we used EGA-IAMS to

evaluate the temperature dependence of the peak for

Mn(CO)5Li? (m/z 202) to obtain information about the

dissociation of Mn(CO)5 from Mn2(CO)10. The inset of

Fig. 3 shows a pyrogram, obtained in selected ion moni-

toring mode (Mn(CO)5Li?, m/z 202), of Mn2(CO)10 sub-

jected to temperature-programmed heating to 500 �C in the

IFF. The presence of a clear peak suggests that Mn(CO)5

was released in free radical form.

Dissociation of chemical compounds may involve a

complicated set of competing reactions. In this study, we

assumed that

da=dt ¼ kx 1� að Þ ð1Þ

where a is the degree of yield of the decomposition product

and k is the rate constant of the decomposition reaction; we

also assumed that the reaction was first order (that is,

we assumed a unimolecular dissociation reaction). The

temperature dependence of the rate constant may be

approximated by a simple Arrhenius equation: k ¼
Ae�ðEa=RTÞ, where A is the frequency factor, and Ea is the

apparent activation energy. Equation 1 can be transformed

into

Buffer
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Fig. 1 Schematic diagram of the evolved gas analysis–ion attach-

ment mass spectrometry system used for thermal analysis of solid

Mn2(CO)10 in a nitrogen flow at 105 Pa. 1 IR lamp unit, 2 sample

holder, 3 70 lm orifice, 4 gate valve, 5 Li? ion emitter bead fused

onto an Ir wire, 6 focus lens, 7 quadrupole mass spectrometer
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da=dT ¼ Ae�ðEa=RTÞ 1� að Þ ð2Þ

Mathematically, this equation cannot be easily solved.

To overcome this difficulty, we used the Knumann [20]

approximation, which applies multiple linear regressions to

the logarithmic form of Eq. 3:

ln da=dTð Þ ¼ ln Að Þ � Ea=RT þ ln 1� að Þ ð3Þ

The ion signal intensity (i) acquired by real-time selected

ion monitoring of Mn(CO)5Li? (Fig. 3) produced during

pyrolysis of Mn2(CO)10 was used to obtain the functional

form of the kinetic rate expression. From plots of ln i versus

1/T, Ea could be determined [15, 16]. We investigated i for

the Mn(CO)5Li? signal at m/z 202 over the temperature

range 125–130 �C to obtain the rate expression for Mn(CO)5

dissociation; we assumed that there was a simple correlation

between the adduct ion signal intensity and the product

concentrations and that the reaction exhibited first-order
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Fig. 2 Ion attachment mass

spectra of products obtained

from Mn2(CO)10 at furnace

temperatures of 95 �C (upper
panel) and 145 �C (lower panel)
under nitrogen. Samples were

placed in the furnace and then

heated from room temperature

to 800 �C at a linearly

programmed rate of 20 �C/min
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Fig. 3 Arrhenius plot of Mn(CO)5Li? signal intensity versus 1/T in

the temperature range from 125 to 130 �C. Inset: evolved gas analysis

curve for Mn(CO)5 obtained in selected ion monitoring mode from

the relative ion intensities for Mn(CO)5Li? (m/z 202) during

temperature-programmed heating in the infrared image furnace

EGA–IAMS analysis of decacarbonyl dimanganese pyrolysis 433

123



kinetics. The slope of the plot of signal intensity versus 1/

T was constant (Fig. 3), and an Ea of 274.57 kJ/mol and an

A of 2.44 9 1033 s-1 were calculated from the plot. At this

time, we have no explanation for the large magnitude of A.

Concluding remarks

When it is assumed that the formation of Mn(CO)5 is due

mostly to sublimation and the subsequent breaking of the

Mn–Mn bond of Mn2(CO)10, the Ea value likely reflects the

energy of the Mn–Mn bond and the enthalpy of sublima-

tion. In Table 1, we list all the experimentally observed and

theoretically predicted bond dissociation energies and

activation enthalpies for homolysis of the Mn–Mn of

Mn2(CO)10. Experimental measurements of the Mn–Mn

bond energy vary widely, from 88 to 171 kJ/mol, with the

most recent measurements converging on a value of

approximately 160 kJ/mol. The calculated Mn–Mn bond

dissociation energies (173, 135, and 163 kJ/mol [13, 21,

22]) are in reasonable agreement with this value. The most

recently reported value for the molar enthalpy of

Mn2(CO)10 sublimation, obtained by means of a combus-

tion calorimetry (static bomb) method, is 92.3 kJ/mol [23].

The Ea we determined is close to the sum of the enthalpy of

sublimation (92.3 kJ/mol) and the approximate bond dis-

sociation energy (160 kJ/mol) of Mn2(CO)10.

In summary, we used an EGA-IAMS system with an IFF

to determine Ea for the formation of Mn(CO)5. To the best

of our knowledge, no such experiment has previously been

reported. We believe that this system will aid investiga-

tions of the mechanisms and kinetics of gaseous free

radical reactions of other transition metal complexes.
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